
PHYSICAL REVIEW E JANUARY 1997VOLUME 55, NUMBER 1
Damping of longitudinal waves in colloidal crystals of finite size

E. A. Allahyarov,1 L. I. Podloubny,1 P. P. J. M. Schram,2 and S. A. Trigger1
1Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Street, Moscow 127412, Russia

2Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
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The damping of longitudinal waves in colloidal crystals, considered in the primitive plasmalike model
~counterions and macroions in liquid!, is investigated in the framework of viscoelastic theory in continuous
approximation. The transition from the discrete lattice to the continuous approximation for longitudinal waves
is possible, because the wavelength is much larger than the lattice parameter. The dispersion relations, numeri-
cal and analytical results for the bulk and surface modes are found for the infinite, semifinite, and finite size
crystals. On this basis the experimental results obtained earlier by Hoppenbrouwers and van de Water~unpub-
lished! in finite size crystals are compared with our theoretical results.@S1063-651X~96!08412-7#

PACS number~s!: 82.70.Dd, 63.70.1h
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I. INTRODUCTION

Colloidal crystals~CC! are complex systems of particle
consisting of a few components in three phases: macroion
a crystal phase, small ions~counterions! in a plasma phase
and the neutral molecules of a liquid~usually water!. The
damping of waves in such systems is strong because o
Stokes friction exerted on the macroions and the diffusion
counterions in water. This means that the imaginary par
the complex frequency of the oscillations is at least one or
larger than the real part. The lattice dynamics of CC is
vestigated by means of photon correlation spectrosco
Hurd et al. @1,2# studied crystals in 38mm-wide thin-film
cells. Light scattering experiments by Derksen and van
Water on CC @3# suggest that the dynamics of long
wavelength transverse modes is influenced by the w
bounding the crystal~a series of measurements for a range
thin-film thicknessesl527–128mm!. Hoppenbrouwers and
van de Water@4# provided experimental evidence for a lo
gitudinal optical mode that is due to the relaxation of t
Debye clouds that surround moving macroions. The res
of Hurd led Felderhof and Jones@5# to extending the theory
of infinite crystals with the effects of the diffusion of coun
terions~plasma effects!. In @3# it was discovered that the siz
of the crystals plays an important role. Therefore the exp
ments@1–4# indicate that it is necessary to take into accou
both the real geometry of CC and plasma effects. In t
paper we present a theory in order to account for these
effects in the low-frequency~v<105 Hz! and long-
wavelength limit. Our analysis is based on a continuum
scription of the dynamics in colloidal systems. The collect
excitations in a CC can be modeled either by a dynam
matrix within a lattice dynamics approach or by a different
form following from viscoelastic theory. Obtaining the di
persion curvev(k) for a finite CC is a difficult problem.
Even for a pure finite crystal phase the eigenfrequencies
vectors of oscillations are unknown. To take into account
boundary conditions we use the continuum model of CC@6#.
The transition from the discrete lattice to the continuu
model is possible in the long-wavelength approximation~the
wavelengthl order;50–100mm is much larger than the
lattice parameterR0;1 mm!. In the limit R0/l tending to
551063-651X/97/55~1!/592~6!/$10.00
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zero the system of dynamic equations for three interac
phases was solved with the appropriate boundary condit
on the surface of a crystal. The dispersion equation was
vestigated in a plane geometry. The main results of this w
are ~a! an appearance of a term linear ink52p/l in the
expansion in powers ofk of the imaginary part of the eigen
frequency of the longitudinal waves in the case of a ha
infinite CC; ~b! a modification of the dispersion relation i
the case of a thin CC~symmetric and antisymmetric
branches!; ~c! an explanation of the nonzero value of th
wave damping fork→0 in a finite crystal, which has bee
observed in the experiment@4#. This model leads to a bette
understanding of the discrepancies between theory and
periment.

II. THE DYNAMIC SHIELDING
OF ELECTRIC FIELDS IN THE COLLOIDAL

PLASMA

Longitudinal and transverse waves in CC are excited
the Brownian motion of the macroions. These waves
overdamped due to the friction forces exerted by the solv
fluid. The dynamics of the CC that includes electric and h
drodynamic interactions is described by the equations of m
tion of charged spherical particles~macroions: radiusa,
charge2Ze, massM , displacements in harmonic approx
mations~Rj t)5sje

2 i tv!, the Navier-Stokes equations for in
compressible low-Reynolds-number fluid flow, and the Po
son equation for the electric fieldE~rv! with the charge
densitiesr1 ~counterions! and r2 ~macroions!. The solvent
is assumed structureless with dielectric constante0

div E~rv!54pdr1~rv!24p div~P01P2!;

P05
e021

4p
E; ~1!

P0 , P2 are the dielectric polarization of water and macr
ions, respectively. Using the Diracd function one may write
the perturbed charge density of the macroions as
592 © 1997 The American Physical Society
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55 593DAMPING OF LONGITUDINAL WAVES IN COLLOIDAL . . .
dr2~rv!5div P25Ze(
j

~sj•“ !d~r2Rj !.

The solution of the Poisson equation in~kv! space,

e0k
2w~kv!54pdr1~kv!14pdr2~kv!54p

dr2~kv!

e~kv!
;

1

e~kv!
215

dr1~kv!

dr2~kv!
5

r ind
rext

is given by

w~rv!5
4p

e0
E d3k

~2p!3
eik–r

dr2~kv!

e~kv!k2

52
Ze

e0L
2RD

2 (
j

~sj•“ !
12L2RD

2 2e2Lur2Rj u

ur2Rj u
,

~2!

L~v!5
1

RD
S 12 ivt2

v2

vp
2D 1/2,

vp
25

4pe2n1
0

e0m
5
v1
2

RD
2 ,

1

RD
2 5

4pe2n1
0

e0kBT
,

v1
2 5

kBT

m
,

1

t
5

vp
2

n
.

Heren is the effective collision frequency between counte
ons and neutrals of the solvent,RD , n1

0 andm are the Debye
radius, the equilibrium density, and the mass of the cou
rions, respectively. In this paper we use the hydrodyna
model dielectric functione~kv! of the counterions

e~kv!512
vp
2

v~v1 in!2v1
2 k2

. ~3!

The self-field acting on a macroion with centerRj due to its
own distorted Debye cloud is given by

Ej~v!52
Ze

3e0RD
3 ~12LRD!sj ~4!

and gives rise to ionic friction. The electric force due to t
positions of the other macroions is given by

Fj52@2Ze“w~Rjv!#2ZeEj~v!

52
Z2e2

e0L
2RD

2 (
nÞ j

~sn•“ !“
12L2RD

2 2e2LRn j

Rn j
,

~5!
Rnj5uRn2Rj u.

The potentialw~rv! obtained above corresponds to the h
drodynamical approximation. On the basis of the Batmag
Gross, and Krook~BGK! model@7# for the collision integral
it can be shown that the hydrodynamical model fore~kv! ~3!
is always valid for the casen.v @8#, which is of interest for
realistic conditions of CC. For the opposite casev.n the
form ~3! is satisfactory only far away from the resonan
v>kv1 .
-

e-
ic

-
r,

Felderhof and Jones@5# introduced the effects of an ioni
double layer surrounding each particle moving through
fluid. The potential obtained above tends to the Felderh
Jones one@5# for v/vp!1.

III. LONGITUDINAL COLLECTIVE MODES
IN THE BULK COLLOIDAL CRYSTAL

The continuum approximation of the dynamic CC is e
pressed by the equations of motion of a viscoelastic mate
@9#

2rv2uj52~l jqlm2 ivh jqlm!kqklum1 iv
r

M
G jquq

2
Zer

M
Ej , r5Mn2

0 ~6!

—and the Poisson equation

i e0e~kv!~k–E!54pdr2~kv!.

Hereu is the deformation profile,l jqlm is the Lame´ tensor
of elastic constants,h jqlm is the tensor of the relaxation co
efficients~representing the ‘‘internal’’ friction between mac
roions!; the friction matrixG jq reflects the ‘‘external’’ fric-
tion ~between macroions and solvent!.

By using the transition from lattice to continuous va
ables@9#

dV

V0
52

dn2

n2
0 5div u, dr252Zedn25Zen2

0 div u,

V0n2
0 5Vn251, ~6a!

one may write the dispersion equation~A sj
21 is the Green’s

matrix of phonons in the CC!

ues j
b ~kv!u50, es j

b 5e~kv!ds j2V2Asj
21,

Asm5v2d jm1 i
v

M
G jm2

1

r
~l jqlm

2 ivh jqlm!kqkl , Ajm
21Ams5d js , ~7!

V254p
Z2e2n2

0

Me0
, e0es j

b ~kv!ksEj50.

Colloidal crystals form a bcc lattice with the elastic co
stantsl11115C11, l11225C12, l23235C44. The elastic con-
stantsCi can be expressed through the constantsAi , Bi usu-
ally considered for the one-component model in t
framework of the next nearest neighbor approximation

C115
2

R0
~A11A21B1/31B2!,

C445
2

R0
~A11B1/31A2!,

C125
2

R0
~B1/32A12A2!.
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Longitudinal measurements@3,4# were done in the@110#
direction:

u~r t !5u0e
i ~k/A2!~x1y!2 ivt, u05S u0A2

,
u0

A2
, 0D ,

k5S k

A2
,
k

A2
,0D . ~7a!

We use simple@110# geometry and the approximations

G jm5G0d jm , h jqlm50,

where for G0 there are three approximation
G0/M5g056pha/M ~Stokes law;h is the viscosity of the
fluid!—without account of hydrodynamic interactions
macroions;G0/M5g1 with hydrodynamic interactions in a
random medium@10#, andG0/M5g2 for the discrete mode
crystal @11#

g15
g0

12
3

A2
F1/2

, g25
g0

12kLF
1/3, F5

4

3
pn2

0 a3,

~8!

whereF is the volume fraction occupied by the macroion
The functionkL weakly depends onk and kL51.792 for
k50. For the valuesF used in the considered experimen
the difference betweeng0, g1 andg2 is negligible.

The total friction coefficient of the macroionsg taking
into account the self-field effect can be obtained from
equations of motion. The total force of frictionf~v! andg is
given by the expressions

f~v!5 ivMG0s1
Z2e2~12LRD!

3e0RD
3 s5 ivMg~v!s,

f~ t !52Mgs~ t !,
~9!

g~v!5g0S 11a0

12A12z

z D , a05
Z2e2t

18pe0haMRD
3 ,

z5 ivt.

The dispersion equation is given by

eb~kv!512
vp
2

v~v1 in!2v1
2 k2

2
V2

v~v1 ig!2v2
2 k2

50,

v2
2 5

C111C1212C44

2r
. ~10!

In the approximationG'g0, v!n, g0 andk→0 there are
two modes in Eq.~10!: the bulk optical mode~s52Im v!
.

e

s15
1

t0
1

g0
2vp

2v1
2 1n2V2v2

2

ng0
2vp

21g0n
2V2 k2,

1

t0
5

vp
2

n
1

V2

g0
~10a!

and the acoustical mode

s25
vp
2v2

2 1V2v1
2

g0vp
21nV2 k2. ~10b!

IV. SURFACE COLLECTIVE MODES
IN BOUNDED COLLOIDAL PLASMA

FOR OPTICAL MODES

Let us consider a half-space occupied by a tw
component plasma. In the case of a semi-infinite plasma
specular reflection of counterions from the boundary
tween the colloidal plasma and a dielectric medium the d
persion equation for the surface mode has the form

11
k

p E
2`

` dq

~k21q2!eb~k,v!
511

1

a
1
1

a
B~k,v!k50;

B~k,v!5
b31b32

b43Ab3~b3k221!
1~3�4!;

a512a12a2 ; a15
vp
2

v~v1 in!
; a25

V2

v~v1 ig!
;

b15
v1
2

v~v1 in!
; b25

v2
2

v~v1 ig!
; ~11!

b3,452d6Ad22
b1b2

a
;

d5 1
2 ~b11b22a1b22a2b1!; bi j5bi2bj ;

wherek is a three-dimensional wave vector with compone
kz5q andki with ukiu5k, normal and parallel to the surface
respectively, andeb is the bulk dielectric function~10!.
Equation~11! gives the surface-plasmon dispersion relati
for two-component half-space colloidal plasma~Fig. 1!. For
k→0 the dispersion relation is

11a~v!1B~0,v!k10~k2!50, 11a~v0!50,
~12!

v~k!5v02
B~0,v0!

a8~v0!
k; v0'2

i

2 S vp
2

n
1

V2

g0
D .

A similar linear dependencev(k) for the case of metallic
semi-infinite plasmas has been obtained in@12#. The concrete
form of the coefficients in Eq.~12! is, naturally, different
from those in@12#. Our result~curve 6 in Fig. 1! is

s5C11C2k, C2,0.
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Our calculation may be easily extended to deal with thin
crystal geometries~thicknessl52L!

E
2`

` dql

2p
~••• !→ (

m52n
m52n11

~••• !; q→
p

l
m.

Let us consider a slab of colloidal plasma bounded by th
planesz56L and surrounded on both sides by a medium
with dielectric constante0 ~water!. We seek solutions of the
equations for the electric field that have space oscillations
the plasma, but which decay exponentially in the mediu
going away from the slab. The boundary conditions lead
the following equations~which can be solved numerically!
for the eigenvalues:

11
k

L (
m52n

m52n11

1

Fk21S pm

l D 2Geb
511

1

a S coth kLtanhkLD1
b31b32k

ab43Ab3~b3k221!

3S coth kLA12
1

b3k
2

tanhkLA12
1

b3k
2

D 1~3�4!50.

~13!

The upper~lower! equation, which includes coth~tanh!, was
obtained when the sum runs over all even~odd! integersm.
The dispersion relation~13! is a natural generalization for

FIG. 1. Theoretically calculated longitudinal collective damping
rates on basis of Eqs.~10a!, ~11!, and ~13!: 1-bulk optical mode;
2,5-thin-crystal geometry, withl511 mm ~symmetric or antisym-
metric!; 3,4-thickness l555 mm; solid line 6-half-space. The
circles-experiment in@4#. Crystal parameters:R050.7531024 cm,
Z5250,a50.5131025 cm;Q5R0k&/4p.
-
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o

finite L of the result~11!. A similar result has been obtaine
for one-component metal plasmas in Ref.@13#. In the limit
k→0 (kL;1) we find the relations for the roots of equatio
~13!

v6~k!5v6
0 2

B~0,v6
0 !

a8~v6
0 !

~16e22kL!k;

11a~v6
0 !62e22kL50; ~14!

v6
0 '2

i

2 S vp
2

n
1

V2

g0
D ~17e22kL!.

The interference effects, which include the influence of
second surface, lead to a modification of the surface-w
dispersion relation. Surface modes in thin colloidal syst
are symmetric or antisymmetric character with respect to
planez50. It should be noted that in the used approximati
~v!n, g0 and k→0! Eq. ~10! coincides with the results o
kinetic considerations.

V. ANALYTICAL RESULTS
FOR THE ACOUSTICAL MODES

Now let us consider the analytical results for the acous
mode in a colloidal film for parameters of the system su
that

V2v1
2 .vp

2v2
2 , g0vp

2.nV2.

These conditions have been realized particularly in the
periments@4# ~v 2

2 ;2,53103 cm/sec,v 1
2 ;731010 cm/sec,

V2;231013 sec22, v p
2;331018 sec22, L;1022 cm,

g0;23109 sec21, n;1013 sec21!. As is easy to see the ap
proximate dielectric function for the description of such
mode in an infinite system can be taken to be

eb~kv!511
vp
2

v1
2 k2

2
V2

ivg0
50. ~15!

From Eq.~13! we can find two dispersion relations@for the
odd and even summation in Eq.~10!, respectively#,

eodd511
k

12
V2

g0s

1

d
tanh~Ld!50; ~16!

eeven511
2k

12
V2

g0s

1

d H coth~Ld!2
1

2
tanh~Ld!2

1

2Ld J 50,

~17!

d5Fk21 vp
2

v1
2 ~12V2/sg0!

G1/2. ~18!

From Eq. ~16! we obtain the solutions only in the regio
s,V2/g.

For Ld@1 we have
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s5
V2

g0H 11
vp
2

2k2v1
2 F11S 114

k4v1
4

vp
4 D 1/2G J . ~19!

This surface mode is valid for values ofk such that

2kLk2v1
2

vp
2H 11S 114

k4v1
4

vp
4 D 1/2J @1. ~20!

This inequality is always valid forL→`, of course.
For Ld!1 we obtain

s5
V2

g0~11kL!
. ~21!

This solution is valid for

kL.
vp
2

k2v1
2 , kLS kL2

vp
2

k2v1
2 D !1. ~22!

These solutions were considered for the cased2.0. For the
cased2,0 we find for smallk

s5
V2

g0S 11
vp
2

v1
2 kn

2D ,

kn
25k21S p

2L
1

pn

L D 25k21
p2

4L2
~2n11!2. ~23!

For largeL andk→0 the solution~23! reduces to a particu
lar case of the volume acoustic mode~10b!

s5
V2v1

2

g0vp
2 kn

2,

for the conditionsV2v 1
2 .v p

2v 1
2 andg0v p

2.nV2.
As follows from Eq.~23! for finite L there is a finite value

s for k→0

s5
V2

g0S 11
4Lvp

2

p2~2n11!2v1
2 D ,

V2

g0
. ~24!

The condition for the existence of these modes is

kLkn
2v1

2

vp
2S p

2
1pnD !1. ~25!

Forn50 ~the mode with minimal damping! the solution~24!
for thicknesses of the colloidal crystalsl 1555 mm and
l 2511 mm, gives the valuess1(k50)53.5 Hz and
s2(k50)590 Hz, respectively. As follows from Fig. 2 th
value l 2511 mm is a good one for the fitting of the entire
experimental curve obtained from the light scattering experi-
ments@4#, in which the crystal thickness was not determined
exactly. Now let us consider Eq.~17!. In the case ofd2.0
and Ld@1 the result is equivalent to Eq.~16!. In the case
d2.0 andLd!1 we have

s5
V2

g0S 11
1

kL
1

vp
2

k2v1
2 D ~26!

and the limitation

k2L2

11
vp
2

k2v1
2 kL

!1. ~27!

For the cased2,0 andk→0 we find the solution from one
of two conditions

sin Ld850, cosLd850, d8252d2.0. ~28!

The second of these equations corresponds to the conside
ation above. The first of them gives a similar spectrum which
also leads to the volume acoustic mode.

VI. CONCLUSIONS

A system of dynamical equations for colloidal crystals in
the continuum approximation is investigated and the results
for the wave damping of the longitudinal modes for infinite
and finite CC, obtained in@14#, are systematically derived
and analyzed. Collective modes in CC-bulk optical and

FIG. 2. Theoretically calculated longitudinal collective damping
rates on basis of Eqs.~10b! and~23!: 1-thin-crystal withl511mm;
2-thicknessl555 mm; dashed line 3-bulk acoustical mode. The
circles-experiment@4#. Crystal parameters:R050.7531024 cm,
Z5250,a50.5131025 cm;Q5R0k&/4p.
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acoustic are found from this theory. The surface effects
taken into account. We find and analyze the dispers
relations for finite and half-infinite CC numerically and an
lytically. A comparison with the acoustical longitudina
mode found in the experiments in@4# is made.
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