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Damping of longitudinal waves in colloidal crystals of finite size
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The damping of longitudinal waves in colloidal crystals, considered in the primitive plasmalike model
(counterions and macroions in ligyjds investigated in the framework of viscoelastic theory in continuous
approximation. The transition from the discrete lattice to the continuous approximation for longitudinal waves
is possible, because the wavelength is much larger than the lattice parameter. The dispersion relations, numeri-
cal and analytical results for the bulk and surface modes are found for the infinite, semifinite, and finite size
crystals. On this basis the experimental results obtained earlier by Hoppenbrouwers and van danfvaler
lished in finite size crystals are compared with our theoretical resif$063-651X96)08412-1

PACS numbgs): 82.70.Dd, 63.70th

[. INTRODUCTION zero the system of dynamic equations for three interacting
phases was solved with the appropriate boundary conditions
Colloidal crystals(CC) are complex systems of particles, on the surface of a crystal. The dispersion equation was in-
consisting of a few components in three phases: macroions iestigated in a plane geometry. The main results of this work
a crystal phase, small ior(sounteriony in a plasma phase, are (& an appearance of a term linear ks=2/\ in the
and the neutral molecules of a liquidsually watey. The ~ expansion in powers df of the imaginary part of the eigen-
damping of waves in such systems is strong because of tHgequency of the longitudinal waves in the case of a half-
Stokes friction exerted on the macroions and the diffusion ofnfinite CC; (b) a modification of the dispersion relation in
counterions in water. This means that the imaginary part ofhe case of a thin CC(symmetric and antisymmetric
the complex frequency of the oscillations is at least one ordePranches (c) an explanation of the nonzero value of the
larger than the real part. The lattice dynamics of CC is inWwave damping fok—0 in a finite crystal, which has been
vestigated by means of photon correlation spectroscopyebserved in the experimefd]. This model leads to a better
Hurd et al. [1,2] studied crystals in 3&m-wide thin-film und_erstandmg of the discrepancies between theory and ex-
cells. Light scattering experiments by Derksen and van d@eriment.
Water on CC[3] suggest that the dynamics of long-
wavelength transverse modes is influenced by the walls
bounding the crystdla series of measurements for a range of
thin-film thicknesse$=27-128um). Hoppenbrouwers and
van de Watef4] provided experimental evidence for a lon-
gitudinal optical mode that is due to the relaxation of the [|ongitudinal and transverse waves in CC are excited by
Debye clouds that surround moving macroions. The resultthe Brownian motion of the macroions. These waves are
of Hurd led Felderhof and JongS] to extending the theory overdamped due to the friction forces exerted by the solvent
of infinite crystals with the effects of the diffusion of coun- fluid. The dynamics of the CC that includes electric and hy-
terions(plasma effects In [3] it was discovered that the size drodynamic interactions is described by the equations of mo-
of the crystals plays an important role. Therefore the experition of charged spherical particle@nacroions: radiusa,
ments[1—-4] indicate that it is necessary to take into accountcharge— Ze, massM, displacements in harmonic approxi-
both the real geometry of CC and plasma effects. In thi?.nations(Rjt):s,je*"w), the Navier-Stokes equations for in-
paper we present a theory in order to account for these watlompressible low-Reynolds-number fluid flow, and the Pois-
effects in the low-frequency(w<10> Hz) and long- son equation for the electric fielfi(rw) with the charge
wavelength limit. Our analysis is based on a continuum dedensitiesp, (counteriony and p_ (macroion$. The solvent
scription of the dynamics in colloidal systems. The collectiveis assumed structureless with dielectric constgnt
excitations in a CC can be modeled either by a dynamical
matrix within a lattice dynamics approach or by a differential
form following from viscoelastic theory. Obtaining the dis-
persion curvew(k) for a finite CC is a difficult problem.
Even for a pure finite crystal phase the eigenfrequencies and e0—1
vectors of oscillations are unknown. To take into account the Po= 2 E; (1)
. . a
boundary conditions we use the continuum model of[6C
The transition from the discrete lattice to the continuum
model is possible in the long-wavelength approximaftihe Py, P_ are the dielectric polarization of water and macro-
wavelength\ order ~50—100um is much larger than the ions, respectively. Using the Diratfunction one may write
lattice parameteRy~1 um). In the limit Ry/A tending to  the perturbed charge density of the macroions as

Il. THE DYNAMIC SHIELDING
OF ELECTRIC FIELDS IN THE COLLOIDAL
PLASMA

div E(fw)=47wép (rw)—4m div(Py+P_);
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Herev is the effective collision frequency between counteri-
ons and neutrals of the solvef, , n% andm are the Debye
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Felderhof and Jond$] introduced the effects of an ionic
double layer surrounding each particle moving through the
fluid. The potential obtained above tends to the Felderhof-
Jones ong5] for w/wp<1.

IIl. LONGITUDINAL COLLECTIVE MODES
IN THE BULK COLLOIDAL CRYSTAL

The continuum approximation of the dynamic CC is ex-
pressed by the equations of motion of a viscoelastic material

(9]

. .pP
_prUjZ_()\jq|m_|w7]jq|m)qu|um+|w M quuq
Zep
- V Ej , pP= Mn(l (6)

—and the Poisson equation
iege(kw)(k-E)=478p_(Kw).

Hereu is the deformation profile g, is the Lametensor
of elastic constantsy;qm is the tensor of the relaxation co-
efficients(representing the “internal” friction between mac-
roions; the friction matrixT';, reflects the “external” fric-
tion (between macroions and solvgnt

By using the transition from lattice to continuous vari-
ables[9]

oV

Vo

on_ _d
0= iv u,

Sp_=—2Zesn_=Zer’ div u,

radius, the equilibrium density, and the mass of the counte-

rions, respectively. In this paper we use the hydrodynamic

model dielectric functiore(kw) of the counterions

2
p

o(w+iv)—vik?

w

e(kw)=1 (©))

The self-field acting on a macroion with centy due to its
own distorted Debye cloud is given by

Ze

Ej(w):_m(l_ARD)sj (4)

and gives rise to ionic friction. The electric force due to the

positions of the other macroions is given by

7%? 1-A%RE—e P

- -V)V ,
oA & (V) Roj
©)

The potentiale(r v) obtained above corresponds to the hy-

Von® =Vn_=1, (6a)
one may write the dispersion equati()él'n;jl is the Green’s
matrix of phonons in the CC

|egj(kw)| =0, egj: 6(kw)5sj—QZAgjl,
1)

— 2 ;
Asm—(,() 5jm+| M ij_;()\jmm

—i0jgmKeKi,  AmAns= s, @)
) Z%e?n® .
O =47 Mey €0€sj(Kw)ksE;=0.

Colloidal crystals form a bcc lattice with the elastic con-
Stants)\llllz Cll’ )\1122: C12, )\2323: C44. The e|aStIC con-
stantsC; can be expressed through the const#ntsB; usu-
ally considered for the one-component model in the
framework of the next nearest neighbor approximation

2
C]_]_:R_O (A1+A2+ Bl/3+ BZ)!

drodynamical approximation. On the basis of the Batmager,

Gross, and KrookBGK) model[7] for the collision integral
it can be shown that the hydrodynamical modeldtw) (3)

is always valid for the case>w [8], which is of interest for
realistic conditions of CC. For the opposite case v the

form (3) is satisfactory only far away from the resonance

w=kv, .

2
CAA:R_O (Al+ Bll3+ AZ)!

2
C12:R_O (B1/3=A1—Ay).
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Longitudinal measuremen{8,4] were done in th¢110]
direction:

u(rt):uoei(k/&)(ery)fiwt’ Uo
ke k k 0 7a
\/5’ \/E, .
We use simplg¢110] geometry and the approximations

ij=F05]-m, 77jq|m=0v

where for Iy there are three
I'y/M=vy,=6mna/M (Stokes law; is the viscosity of the

fluid)—without account of hydrodynamic interactions of
macroions;I"y/M =y, with hydrodynamic interactions in a
random mediunj10], andI'y/M =y, for the discrete model

approximations:
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IV. SURFACE COLLECTIVE MODES
IN BOUNDED COLLOIDAL PLASMA
FOR OPTICAL MODES

Let us consider a half-space occupied by a two-
component plasma. In the case of a semi-infinite plasma and
specular reflection of counterions from the boundary be-
tween the colloidal plasma and a dielectric medium the dis-
persion equation for the surface mode has the form

crystal[11] 1+ k fw dq 1 1 N 1 B(K 0IK=0-
7). (T Pekw) ot g Blkek=0;
Yo Yo
Y1 , ’yzzw, O] § wn9a3,
3 L Db
1-—= o' B(k,w)= ———2 4+ (3=24);
V2 ® baaVbs(bsk®—1)
where® is the volume fraction occupied by the macroions. wf) 0?
The functionk, weakly depends ok and k, =1.792 for a=1l-a;—ay; aﬁm? az:m;
k=0. For the valuesb used in the considered experiments
the difference betweery,, y; and vy, is negligible.
The total friction coefficient of the macroiong taking vi ) v? _
into account the self-field effect can be obtained from the b1=w(w+iy), bz:w(wﬂy)' (1)

equations of motion. The total force of frictidfw) andy is
given by the expressions

Z%e%(1- ARp)

f(w)=1oMTI'ys 360R?|5 s=ioMy(w)s,
f(t)=—Mys(t),
9
(4 1—\/1—2) 2%
N@)=yo| Lt ag — T 0T 18regnaMRy’
Z=iwT.

The dispersion equation is given by

ko)=1 @ o ~0
€o(ko)= w(o+iv)—vik? w(o+iy)—vik?®
Cy1+Cppt2C
p2 = ot t a4 (10
2p

In the approximatiod'~vy,, w<<v, y, andk—0 there are
two modes in Eq(10): the bulk optical modéo=—Im w)

[ o bibo
- — S5+ 2_ - “.
b3y4 o* o o

6=3(by+by,—asb,—azby);  bjj=b;—b

J 1

wherek is a three-dimensional wave vector with components
k,=q andk; with |k| =k, normal and parallel to the surface,
respectively, ande, is the bulk dielectric function(10).
Equation(11) gives the surface-plasmon dispersion relation
for two-component half-space colloidal plasitig. 1). For
k—0 the dispersion relation is

1+ a(w)+B(0,0)k+0(k?) =0, 1+ a(wy)=0,
(12)
B B(0.wo) i ws 02
w(k)—wo—m ; w0~—§ 7+y—0 .

A similar linear dependence(k) for the case of metallic
semi-infinite plasmas has been obtainefili]. The concrete
form of the coefficients in Eq(12) is, naturally, different
from those in[12]. Our result(curve 6 in Fig. } is

O':Cl+ Czk, C2<0
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FIG. 1. Theoretically calculated longitudinal collective damping
rates on basis of Eq$10a, (11), and (13): 1-bulk optical mode;
2,5-thin-crystal geometry, with=11 um (symmetric or antisym-
metrig); 3,4-thicknessl=55 um; solid line 6-half-space. The
circles-experiment if4]. Crystal parameters?,=0.75x 10~ * cm,
Z=250,a=0.51x10"° cm; Q= Rokv2/4.
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finite L of the result(11). A similar result has been obtained
for one-component metal plasmas in Ref3]. In the limit
k—0 (kL~1) we find the relations for the roots of equation
(13

B(0,02)
w.(K)=0l— ——7 (1xe Xk
- a(w3)
1+ a(wl)*2e2t=0; (14)
. 2 2
e )
W 515 + o (1xe ).

The interference effects, which include the influence of the
second surface, lead to a modification of the surface-wave
dispersion relation. Surface modes in thin colloidal system
are symmetric or antisymmetric character with respect to the
planez=0. It should be noted that in the used approximation
(w<<w, y, andk—0) Eq. (10) coincides with the results of
kinetic considerations.

V. ANALYTICAL RESULTS
FOR THE ACOUSTICAL MODES

Now let us consider the analytical results for the acoustic
mode in a colloidal film for parameters of the system such
that

Our calculation may be easily extended to deal with thin-

crystal geometriegthicknesd =2L)

fi% E (-

m=2n
m=2n+1

()= );

szi>w,2302,, yowg> Q2.

These conditions have been realized particularly in the ex-
periments[4] (v 2 ~2,5x 10° cm/secp 2 ~7x10% cm/sec,
0%~2x10"° sec? w2~3x10® sec? L~102 cm,
Yo~2x10° sec?, 1003 sec}). As is easy to see the ap-

Let us consider a slab of colloidal plasma bounded by thgyroximate dielectric function for the description of such a

with dielectric constant, (water. We seek solutions of the

equations for the electric field that have space oscillations in
the plasma, but which decay exponentially in the medium
going away from the slab. The boundary conditions lead to

the following equationgwhich can be solved numerically
for the eigenvalues:

>

m=2n
m=2n+1

+_
1L

1

o

cothkL
tanhkL

b31b32k

+

abysybs(bgk®—1)
hkLy/1 1

y cot _W
hkL~/1 1

tan _W

The upper(lower) equation, which includes cofttanh, was
obtained when the sum runs over all eedd) integersm.
The dispersion relatiofl3) is a natural generalization for

+(324)=0.

13

w2
_2L
v4k?

2

en(kw)=1+ =0. (15)

_ia)yo

From Eq.(13) we can find two dispersion relatioffor the
odd and even summation in E(.0), respectively,

k
€odg= 1+ —7 g tantLd)=0; (16)
Yoo

_1 2k L 1 P 0
€over— 1+ aZ 3 coth( )—Etani‘( )—m =0,

Yoo
(17)

(1)2 1/2

d=| Ko+ 5y 18
03 (1= Q% ayp) 18

From Eq.(16) we obtain the solutions only in the region
a<Q?y.
ForLd>1 we have
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This surface mode is valid for values bfsuch that 500
2kLk?v?
Ko i\ 12 >1. (20 400 T
wi| 14| 1+4 j) ]
wp 300} .
This inequality is always valid fot — o, of course.
For Ld<1 we obtain 2009 iy
02 100+ ]
o= —yo(l-l—kL) . (21 -
T T T T T T
This solution is valid for 000 001 002 o.oaQ 004 005 006
wp wp
kL>W' KL| kL— 7 <1 (22 FIG. 2. Theoretically calculated longitudinal collective damping
+ +

These solutions were considered for the ad&e 0. For the
cased?<0 we find for smallk

QZ
g—= wz y
p
o]
o[
a mn 2 772
kﬁ=k2+ Z+T =k2+w(2n+1)2. (23

For largeL andk— 0 the solution(23) reduces to a particu-
lar case of the volume acoustic moddh)

2.2
Q%L
o= 2 I(n

Yowp

for the conditions)?v 3 >w5v 3 and yoo 5> vQ2
As follows from Eq.(23) for finite L there is a finite value
o for k—0
70( 1

The condition for the existence of these modes is

QZ
<—.
Yo

QZ
4L w?

p
+
72(2n+1)%2

(24

g=

kLk?v?2
W“ T <1, (25)

=+
27T

wZ
P

Forn=0 (the mode with minimal dampindhe solution(24)
for thicknesses of the colloidal crystals=55 um and
[,=11 wm, gives the valueso,(k=0)=3.5 Hz and

rates on basis of Eq§10b) and(23): 1-thin-crystal withl =11 um;
2-thicknessl =55 um; dashed line 3-bulk acoustical mode. The
circles-experimenf4]. Crystal parametersR,=0.75x10"4 cm,
Z=250,a=0.51x 10" ° cm; Q= Rykv2/4.

valuel,=11 um is a good one for the fitting of the entire
experimental curve obtained from the light scattering experi-
ments[4], in which the crystal thickness was not determined
exactly. Now let us consider E@L7). In the case ofi>>0
andLd>1 the result is equivalent to Eq16). In the case
d?>0 andLd<1 we have

Q2
p
’yO 1+ kL + _2_k20+)
and the limitation

k2L?

—<1 (27
w

1+ —+ kL

k%2

For the casel’<0 andk—0 we find the solution from one

of two conditions
sinLd’=0, cosLd’=0, d'?=-d?>0. (298

The second of these equations corresponds to the consider-

ation above. The first of them gives a similar spectrum which

also leads to the volume acoustic mode.

VI. CONCLUSIONS

A system of dynamical equations for colloidal crystals in
the continuum approximation is investigated and the results
for the wave damping of the longitudinal modes for infinite
and finite CC, obtained ifl14], are systematically derived

o,(k=0)=90 Hz, respectively. As follows from Fig. 2 the and analyzed. Collective modes in CC-bulk optical and
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acoustic are found from this theory. The surface effects are ACKNOWLEDGMENT

taken into account. We find and analyze the dispersion

relations for finite and half-infinite CC numerically and ana- Three of us(E. A., L. P., and S. 7.gratefully acknowl-
Iytically. A comparison with the acoustical longitudinal edge the financial support from the Dutch Organization for
mode found in the experiments 4] is made. Scientific ResearcfiNWO).

[1] A. J. Hurd, N. A. Clark, R. C. Mockler, and W. J. O’'Sullivan, [8] A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze,

Phys. Rev. A26, 2869(1982. Kolebania i volny v plazmennyh sredaMGU, Moscow,

[2] A. J. Hurdet al,, J. Fluid. Mech.153 401 (1985. 1990 (in Russian.

[3] J. Derksen and W. van de Water, Phys. Rev4% 5660 [9] L. D. Landau and E. M. Lifshitz,;The Theory of Elasticity
(1992. (Pergamon, New York, 19F0chap. 29.

[4] M. Hoppenbrouwers and W. van de Water, Physic&Bbe [10] O. P. G. Saffman, Stud. Appl. Math2, 115(1973.
published. [11] H. Hasimoto, J. Fluid. Mechb, 317 (1959.

[5] B. U. Felderhof and R. B. Jones, Faraday Discuss. Chem. So¢12] A. Griffin and J. Harris, Phys. Rev. A, 2190(1971); Phys.
83, 69 (1987. Lett. 34A, 51 (1971).

[6] J. F. Joanny, J. Colloid. Inter. Séi1, 622(1979. [13] A. Eguiluz, Phys. Rev. B9, 1689(1979.

[7] P. L. Batnager, E. P. Gross, and M. Krook, Phys. Rely511 [14] E. A. Allahyarov, L. I. Podloubny, P. P. J. M. Schram, and S.
(1954). A. Trigger (unpublishegl



